Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15.
نویسندگان
چکیده
Metazoan NXF1/p15 heterodimers promote export of bulk mRNA through nuclear pore complexes (NPC). NXF1 interacts with the NPC via two distinct structural domains, the UBA-like domain and the NTF2-like scaffold, which results from the heterodimerization of the NTF2-like domain of NXF1 with p15. Both domains feature a single nucleoporin-binding site, and they act synergistically to promote NPC translocation. Whether the NTF2-like scaffold (and thereby p15) contributes only to NXF1/NPC association or is also required for other functions, e.g., to impart directionality to the export process by regulating NXF1/NPC or NXF1/cargo interactions, remains unresolved. Here we show that a minimum of two nucleoporin-binding sites is required for NXF1-mediated export of cellular mRNA. These binding sites can be provided by an NTF2-like scaffold followed by a UBA-like domain (as in the wild-type protein) or by two NTF2-like scaffolds or two UBA-like domains in tandem. In the latter case, the export activity of NXF1 is independent of p15. Thus, as for the UBA-like domain, the function of the NTF2-like scaffold is confined to nucleoporin binding. More importantly, two copies of either of these domains are sufficient to promote directional transport of mRNA cargoes across the NPC.
منابع مشابه
TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture.
Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we ...
متن کاملNTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export
Metazoan Tap-p15 (also called Nxf1-Nxt1) and yeast Mex67-Mtr2 heterodimers are the general mRNA export receptors. The RNA binding activity of Tap-p15, which is essential for mRNA nuclear export, has been attributed to the amino-terminal RNA binding module of Tap consists of RNA recognition motif (RRM) and leucine-rich repeat. In this study, we identified a novel RNA interaction surface in the N...
متن کاملFG-nucleoporin binding domain of Tap/NXF1
The vertebrate Tap protein is a member of the NXF family of shuttling transport receptors for nuclear export of mRNA. Tap has a modular structure, and its most C-terminal domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate nuclear shuttling. We report the solution structure of this C-terminal domain, which is based on a di...
متن کاملInfluenza virus targets the mRNA export machinery and the nuclear pore complex.
The NS1 protein of influenza A virus is a major virulence factor that is essential for pathogenesis. NS1 functions to impair innate and adaptive immunity by inhibiting host signal transduction and gene expression, but its mechanisms of action remain to be fully elucidated. We show here that NS1 forms an inhibitory complex with NXF1/TAP, p15/NXT, Rae1/mrnp41, and E1B-AP5, which are key constitue...
متن کاملNuclear Export of Human Hepatitis B Virus Core Protein and Pregenomic RNA Depends on the Cellular NXF1-p15 Machinery
Hepatitis B virus (HBV) core protein (HBc) can shuttle between nucleus and cytoplasm. Cytoplasm-predominant HBc is clinically associated with severe liver inflammation. Previously, we found that HBc arginine-rich domain (ARD) can associate with a host factor NXF1 (TAP) by coimmunoprecipitation. It is well known that NXF1-p15 heterodimer can serve as a major export receptor of nuclear mRNA as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 22 15 شماره
صفحات -
تاریخ انتشار 2002